منابع مشابه
Moduli of Complexes on a Proper Morphism
Given a proper morphism X → S, we show that a large class of objects in the derived category of X naturally form an Artin stack locally of finite presentation over S. This class includes S-flat coherent sheaves and, more generally, contains the collection of all S-flat objects which can appear in the heart of a reasonable sheaf of t-structures on X. In this sense, this is the Mother of all Modu...
متن کامل5 Moduli of complexes on a proper morphism or The mother of all moduli spaces ( of sheaves )
3 Deformation theory of complexes 8 3.1 Statement of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Complexes over an affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملHigher Direct Images of Coherent Sheaves under a Proper Morphism
1.1. Injective resolutions. Let C be an abelian category. An object I ∈ C is injective if the functor Hom(−, I) is exact. An injective resolution of an object A ∈ C is an exact sequence 0→ A→ I → I → . . . where I• are injective. We say C has enough injectives if every object has an injective resolution. It is easy to see that this is equivalent to saying every object can be embedded in an inje...
متن کاملDerived Moduli of Complexes and Derived Grassmannians
In the st part of this paper we construct a model structure for the category of ltered cochain complexes of modules over some commutative ring R and explain how the classical Rees construction relates this to the usual projective model structure over cochain complexes. The second part of the paper is devoted to the study of derived moduli of sheaves: we give a new proof of the representability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Geometry
سال: 2006
ISSN: 1056-3911,1534-7486
DOI: 10.1090/s1056-3911-05-00418-2